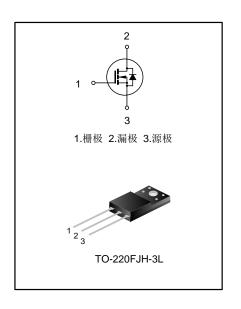
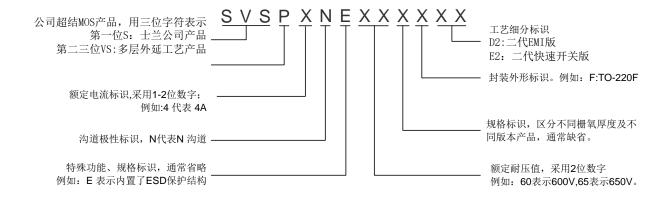


11A,650V 超结 MOS功率管

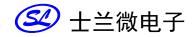

描述

SVS11N65FJHD2 N 沟道增强型高压功率 MOSFET 采用士兰微电子超结 MOS 技术制造,具有很低的传导损耗和开关损耗。使得功率转换器具有高效,高功率密度,提高热行为。


此外, SVS11N65FJHD2应用广泛。如,适用于硬/软开关拓扑。

特点

- ◆ 11A,650V, $R_{DS(on)(\text{#}^{2}\text{@}^{2})}$ =0.33Ω@ V_{GS} =10V
- ◆ 创新高压技术
- ◆ 低栅极电荷
- ◆ 定期额定雪崩
- ◆ 较强 dv/dt 能力
- ◆ 高电流峰值



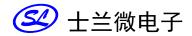
产品命名规则

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVS11N65FJHD2	TO-220FJH-3L	11N65FJHD2	无卤	料管

极限参数(除非特殊说明, T_c=25°C)

参数名称		符号	参数范围	单位
漏源电压		V_{DS}	650	٧
栅源电压		V_{GS}	±30	V
漏极电流	T _C =25°C	- I _D -	11	А
	T _C =100°C		7	A
漏极脉冲电流		I _{DM}	44	Α
耗散功率(T _C =25°C)		P _D	35	W
大于25°C每摄氏度减少		r _D	0.28	W/°C
单脉冲雪崩能量(注 1)		E _{AS}	250	mJ
反向二极管 dv/dt (注 2)		dv/dt	15	V/ns
MOS管 dv/dt 耐用性 (注 3)		dv/dt	50	V/ns
工作结温范围		T _J	-55~+150	°C
贮存温度范围		T _{stg} -55~+150		°C


热阻特性

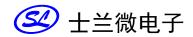
参数名称	符号	参数范围	单位
芯片对管壳热阻	$R_{ heta JC}$	3.57	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.5	°C/W

电气参数(除非特殊说明, T_c=25°C)

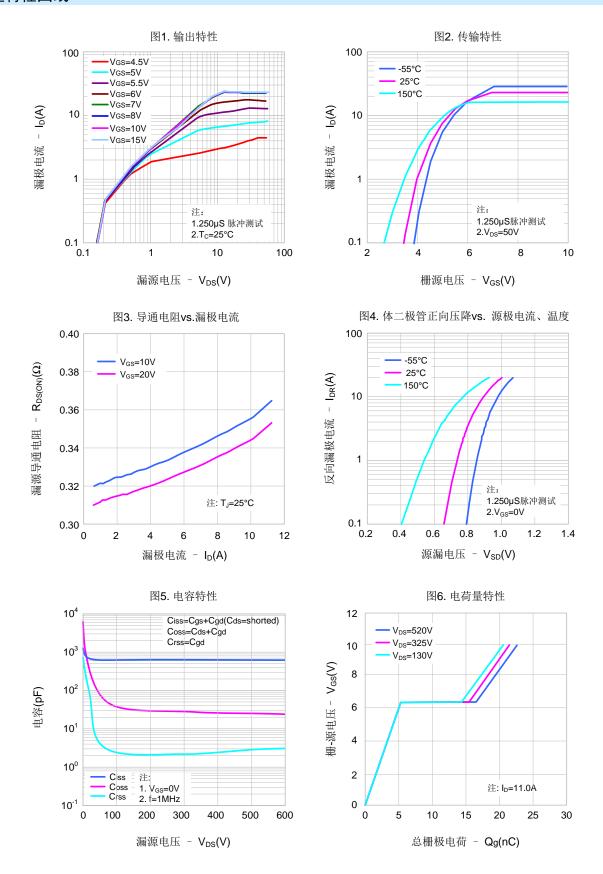
参数名称	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250μA	650			V
漏源漏电流	I _{DSS}	V _{DS} =650V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I _{GSS}	V _{GS} =±30V, V _{DS} =0V			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0		4.0	V
静态漏源导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =5.5A		0.33	0.4	Ω
栅电阻	R_{g}	f=1MHz		5.2		Ω
输入电容	C_{iss}			632		
输出电容	C_{oss}	f=1MHz,V _{GS} =0V,		37		pF
反向传输电容	C_{rss}	V _{DS} =100V		2.3		
开启延迟时间	t _{d(on)}			12		
开启上升时间	t _r	$V_{DD}=325V,V_{GS}=10V,$ $R_{G}=24\Omega,$		35		
关断延迟时间	$t_{d(off)}$	I _D =11A		64		ns
关断下降时间	t _f	(注 4,5)		31		
栅极电荷量	Q_g		-	23	-	
栅极-源极电荷量	Q_{gs}	V _{DD} =520V, V _{GS} =10V,		5.3		nC
栅极-漏极电荷量	Q_gd	I _D =11A (注 4,5)		11		

版本号: 1.1

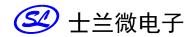
SVS11N65FJHD2 说明书

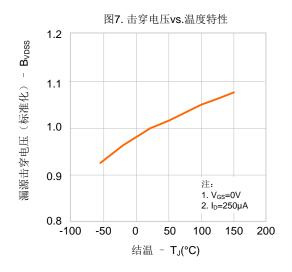

源-漏二极管特性参数

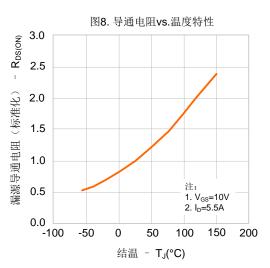
参数名称	符号	测试条件	最小值	典型值	最大值	单位
连续源极电流	Is	MOS 管中源极、漏极构成的反偏 P-N			11	۸
源极脉冲电流	I _{SM}	结			44	А
二极管压降	V_{SD}	I _S =11A,V _{GS} =0V	-		1.4	٧
反向恢复时间	T _{rr}	I _S =11A,V _{GS} =0V,	1	361		ns
反向恢复电荷	Q _{rr}	dI _F /dt=100A/µs (注 4)		3.9		μC

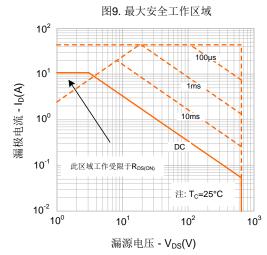

注:

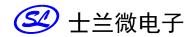
- 1. L=79mH,I_{AS}=2.4A,V_{DD}=100V, R_G=25Ω, 开始温度T_J=25°C;
- 2. $V_{DS}=0\sim400V$, $I_{SD}<=11A$, $T_{J}=25^{\circ}C$;
- 3. $V_{DS}=0~480V$;
- 4. 脉冲测试: 脉冲宽度≤300μs, 占空比≤2%;
- 5. 基本上不受工作温度的影响。


版本号: 1.1

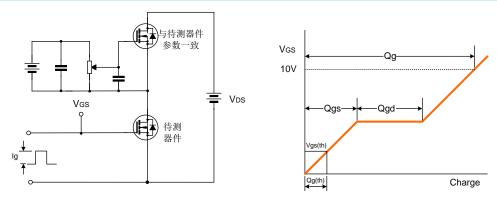

典型特性曲线

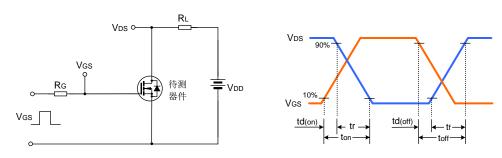


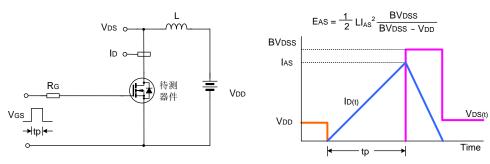

版本号: 1.1

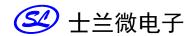


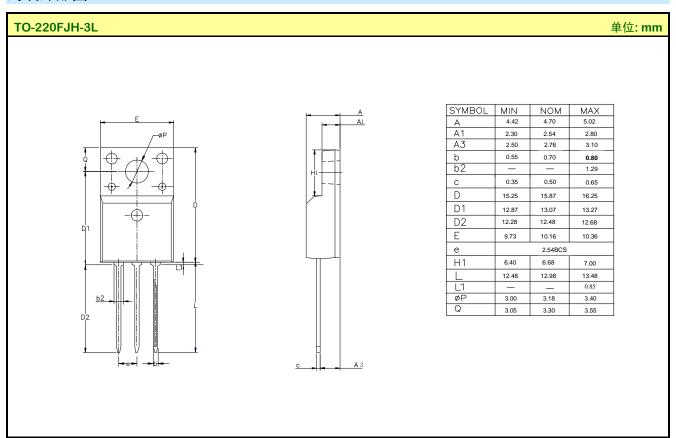
典型特性曲线 (续)



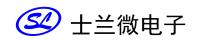



典型测试电路


栅极电荷量测试电路及波形图


开关时间测试电路及波形图

EAS测试电路及波形图



封装外形图

重要注意事项:

- ◆ 士兰保留说明书的更改权,恕不另行通知。客户在下单前应获取我司最新版本资料,并验证相关信息是否最新 和完整。
- ◆ 我司产品属于消费类和/或民用类电子产品。
- 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 购买产品时请认清我司商标,如有疑问请与本公司联系。
- ◆ 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http://www.silan.com.cn

SVS11N65FJHD2 说明书

产品名称: SVS11N65FJHD2 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.1

修改记录:

1. 更新电气示意图

2. 更新图 5

3. 更新典型测试电路图

4. 更新重要注意事项

版 本: 1.0

修改记录:

1. 正式发布版本

杭州士兰微电子股份有限公司